Contents
View Dr Jane Wright's photo gallery
You can order the DVD from the Academy for $15 (including GST and postage)
Dr Jane Wright was interviewed in 2000 for the Interviews with Australian scientists series. By viewing the interviews in this series, or reading the transcripts and extracts, your students can begin to appreciate Australia's contribution to the growth of scientific knowledge.
The following summary of Wright's career sets the context for the extract chosen for these teachers notes. The extract covers her experiences in Africa searching for a biological control agent for dung-breeding flies. Use the focus questions that accompany the extract to promote discussion among your students.
Jane Wright was born in 1954 in Ontario, Canada. She received a BSc (Hons) in 1976 from Queen's University, Canada. She studied lady beetle biology at the University of Guelph, Canada, and received an MSc there in 1978. In 1984 she was awarded a PhD from the University of California, Berkeley, USA, where she researched the biology of a parasitic wasp.
In 1984 Wright took a position with CSIRO Entomology and is still with that organisation. She spent 1984-1988 working on the biological control of dung-breeding flies in South Africa and Brisbane. In 1988 she moved to Canberra as an insect ecologist and behaviourist with CSIRO Entomology’s Stored Grain Research Laboratory (SGRL). At SGRL her work has included trapping and detecting insects in stored grain products and the distribution, ecology and control of the warehouse beetle.
Head of SGRL since 1997, Wright is also currently program leader for CSIRO Entomology's Stored Products and Structural Pests program.
Wright enjoys growing orchids and is an accredited orchid judge for the Orchid Society of New South Wales and the Australian Orchid Council.
An African complement to dung beetle activity
Having finished your doctorate, how did you find work in scientific research?
This is always a big problem. I had an office mate who used to apply for every job that was ever advertised, and papered her wall of the office with rejection letters. I was a little more selective, applying for three jobs in my final year. I was only looking for jobs in Canada or the United States, but somebody told me, ‘No, Jane. If you want to see about the foreign jobs, you really need to read Nature.’ A foreign job seemed too scary to me, but I did want a job. So on the 4th of July long weekend in the United States I pulled down the last few issues of Nature, and there was an advertisement for a job with CSIRO Australia, to work on predatory dung beetles in Africa. I thought, ‘Wow! Now, that’s a job. But everybody knows that Australians are chauvinists. There’s no way they’ll hire a woman to do this job.’ Anyway, I decided that if I didn’t apply I couldn’t turn the job down. The deadline was the following Thursday so I prepared my application over the weekend, and it went into the express mail on Tuesday morning. I got the job.
We have heard a lot about the CSIRO dung beetle project. What was your part in it?
My part was to do with complementing the previous introduction of dung beetles that eat dung. Historically, Australia didn’t have large mammals that produce large pads of dung. It was all small pellet, and the dung beetles in Australia were adapted to that. But we brought in cattle, with dung of a very different consistency, and very few native beetles went across to it. The original dung beetle program was all about getting these large pads of dung buried into the soil, getting the nutrients down and – as a secondary issue – helping to control the flies.
There are a couple of kinds of flies in Australia. The ‘Australian salute’ results from the bush fly, which, although it’s actually a native insect, goes very well in dung. My project, though, was about the buffalo fly, which is a pest of cattle in Queensland. The adult flies stay on the cattle and take blood meals – sometimes 20 a day – all day, every day. You can imagine how much irritation that will cause an animal, and high numbers will even make open, bleeding lesions on the animals. So buffalo fly is a very serious pest.
Its life cycle begins when the females get blood meals and use that protein to develop the eggs. When the cow produces a pad, the flies that are ready to lay go down onto the hot dung and lay their eggs around the edges or just underneath the bottom, and immediately fly back on top. Once the dung starts to cool, flies of this particular kind won’t lay eggs any more, so on the pad you get a set of eggs that are all laid within a few minutes of each other. These eggs hatch very fast, the larvae eat the dung very fast – they complete development in only about four days in summer – and then they dig into the soil underneath and make a pupa. After a couple of weeks in that stage, they come up as adults and have to find another host. This is the insect we were concerned with.
In some places, some of the time, the dung-burying dung beetles were not able to get rid of the dung fast enough to prevent the flies from breeding. My project was to look at those kinds of insects that are attracted to dung and feed directly on the eggs and the larvae, so that at times when the dung-burying dung beetles were not sufficient we would have direct predators to feed on the fly populations and help suppress them. I was to go to South Africa and work on a very closely related fly on African buffalo dung, in order to select the right species to bring from Africa to Australia. So my job fitted into the whole by providing complementary beasts to help the dung-burying dung beetles along.
Odiferous searches for a buffalo fly predator
Just how did you look for suitable predators of buffalo fly?
I was hired originally to discover exactly which insects had fed on the buffalo fly, by finding the proteins of the buffalo fly in the guts. (A lot of different kinds of beetles would come to the dung, but not all of them would be necessarily eating the fly we were interested in, so this was a way of catching them in the act.) We took an immunological approach. We created antibodies to the fly eggs or the larvae and then used a test in which we took the gut contents from an insect that we thought could have been feeding and mixed that with the antibodies. A reaction would show the protein was in the gut and therefore that particular beetle ate the insect you were interested in. Sounds terrific. The problem was that although we could determine if an insect had eaten a fly, we could never get it detailed enough to determine one particular fly or even one family of flies, so it really didn’t work out very well. I tried all sorts of things. I got lots of help from the people in the research farm where we were stationed, I got help from the Onderstepoort Veterinary Institute, but in the end I just had to do something else.
If you can’t catch them with a smoking gun, you find the opportunity and the motive. We decided to look for insects that would be in the right place at the right time, and that for other reasons we knew were likely to feed on eggs or larvae of the flies. Place and time was important because ultimately we were going to bring these insects to Australia, and we wanted them to prey on the flies in the places where the flies were going to be – in dung pads out in the open in grassy areas, not in the bushes, often on hard rather than sandy soils – and also very early, when the dung pad is very fresh. (The flies lay their eggs when the dung is hot, and five days later they’re out of there, so it all has to happen early on.)
In a fairly standard ecological approach, we set up a number of experiments where we would put cow dung into open grassland areas, on hard soils or on sandy soils, in some scrubby bushland, in some dense forest, and see what insects came each day to these kinds of dung pads. That allowed us to work out the habitat preferences of the insects that were available to us in that environment. Then we had to narrow it down: of the ones that went to the grassland, which were actually going to be interested in cow dung? There’s lots of dung out there, and lots of other things that these insects could be having a look through in order to find tasty fly larvae to eat.
And so we set up experiments to look at the attraction of these predatory insects to lots of different kinds of decaying material. All of this was being done in a game park in South Africa, so as well as decaying bananas we had rhinoceros dung, cow dung, African buffalo dung – those were quite similar, being both ruminant dungs – and then we started to get into the smellier end. We moved into sheep dung, on into pig dung as an omnivore kind of dung (quite a lot like human dung, which is why we find it so offensive) and then into rotten chickens. We also had plain traps with no bait, to account for the ones that happened to walk by. With our experiments set up in several places with all these different kinds of baits, we could see from the insects we caught each day who was going to what kind of thing.
Aside from being very smelly, it produced a really interesting result. There was no doubt we had specialists in rhinoceros dung, which is quite a lot like horse dung, we had specialists in the ruminant dung, and we had some – the numbers rose as you got smellier and smellier – that were mostly in carrion and only occasionally back in cow dung. In choosing insects to bring to Australia, we wouldn’t consider carrion specialists even if numbers of them appeared reasonably often in this dung, because we already have carrion specialists in Australia. We would concentrate on the ones that were in the grassland, on hard soils, coming very early to fresh dung and concentrating on the cattle or African buffalo dung. This was our way of determining guilt by association.
From the perils of the game park to the naming of an insect
Were there any logistic difficulties in carrying out work in a game park?
Well yes, there were some. We did have accommodation and our own little kitchen cum lab in the research compound where the Natal Parks Board people worked, so that part went very well. But when it came to field sites it was different. We worked in this game park because it had African buffalo, which we could use as models for the Australian cattle. But probably they were the most dangerous animals in the whole reserve. If you think of a bull with a really bad temper, this conjures up African buffalo. And of course there were rhinoceros. White rhinos are kind of nice but huge, and black rhinos get very irritated very fast. So there were some logistics about keeping safe in this environment. At times we would arrive to the field site – after driving through the ford and enjoying the sight of hippopotamuses in the water off to the side – only to find an enormous rhinoceros and her calf right in the middle of it. So we would have to make noise and so on until she moved off.
Then, in our experiment on different dung and carrion types, hyenas would dig up the chicken baits. We knew this was likely to be a problem and so when we set our traps up we put very big, strong cages over the top, and put great big spikes into the ground to hold them in place. But it didn’t matter; the hyenas dug them up and ate all the chicken bait, so I have one whole experiment that’s missing the chickens.
But I think the worst happened one day when we were putting out our experiments. We used to ‘create’ dung pads with fly eggs on them. We would grow the flies in the lab in Pretoria, get the eggs – remember, they hatch very quickly, so we had to keep them cool – and drive really fast for six hours to get to the game park, paint them onto fake dung pads and put them out in the field. And that day, while we were trying to put them out we heard lions on the site. My assistant and her assistant, a young Zulu lad, came running back to the car so fast! We were pretty nervous so we sat inside the car to put all the eggs on the dung pads, and then we drove this brand-new vehicle – not our normal big truck that day – through the field site, running out with the dung pads and back extra quickly so as not to be eaten by the lions.
Focus questions
Select activities that are most appropriate for your lesson plan or add your own. You can also encourage students to identify key issues in the preceding extract and devise their own questions or topics for discussion.
carrion
dung beetle
entomology
insect life cycle
predator
© 2025 Australian Academy of Science