James Arthur Prescott was born on 7 October 1890 at Bolton, Lancashire, England. He was the first of seven children of Joseph Arthur Prescott and his wife, Mary Alice, née Garsden. Three of his five sisters, Stella, Anne and Hilda, served in the nursing profession, Hilda in the Colonial Service in British Guiana, Hongkong, Thailand and Iraq. Another sister, Marie, was a school mistress and the youngest, Dorothy, a pharmacist. John, his brother, became a textile engineer, thus carrying on a family association with that industry. A half sister, Ruth, was also a teacher.
James's grandfather, John Prescott, had worked in textiles and had been closely associated with the trade union movement as a member of the Society of Engineers, as also were some of James's uncles and cousins. John Prescott had been secretary of Bolton No. 2 Branch of the Amalgamated Society of Engineers from 1858 to 1893 and was chairman of the strike committee during the strike of iron-workers in 1887. He was succeeded as secretary by his son, Thomas.
Joseph Prescott began adult life as a fitter of textile machinery at the site of installation. This work took him to Italy, Alsace (then part of Germany) and northern France. His special line of expertise was in machinery for fine spinning, the comber and spinning mule. He rose from fitter to maintenance engineer, to foreman, and to manager in charge of development. In 1897 he was appointed management engineer with the cotton textile firm of Crépy at Lille in northern France and the family, then with three children, moved to that city. Early in 1902 the family returned to Lancashire, this time to Accrington where Joseph was employed by the firm of Howard and Bullough. Essentially the family grew up in Accrington; it was to be an achieving one.
As a result of the above family movements, James Prescott, after kindergarten at Chalfont Street, Bolton, received his primary education in French from 1897 to 1901 inclusive at the Ecole Littré, a school under the municipality of the city of Lille. From the prizes awarded to him it is clear that he was a scholar of some merit. He remained fluent in French throughout his life. Following the return to England, and after a year at Spring Hill Elementary School devoted to re-establishing his command of English and gaining familiarity with the Imperial system of weights and measures, he spent the period 1903 to 1908 in secondary education at the Accrington Municipal Secondary School, later to be the Grammar School. Here he was awarded scholarships by the Accrington Co-operative Society and by Bridge Mechanical. His Leaving Scholarship to the University, awarded by the Lancashire County Council, was based on his results at the Higher Alternative Matriculation Examination.
Commencing in 1908 James Prescott undertook an honours course in chemistry at the University of Manchester and graduated Bachelor of Science with First Class Honours in 1911. This was followed by some months of postgraduate work in organic chemistry on a scholarship under William H. Perkin, whose like-named father was widely regarded as the founder of the coal-tar dye industry. Prescott's work related to the extraction of morphine and cocaine from commercial raw materials and was undertaken primarily to provide a basis for commercial development by Burroughs and Wellcome. Prescott has noted in his written reflections that during this period the teachers who particularly influenced him were W.H. Perkin whose lucidity was exemplary, Robert Robinson, H.B. Dixon, Arthur Lapworth and Chaim Weizmann. Weizmann was later to forsake chemistry for the Zionist movement and to become President of Israel, 1949-1952. The calibre of W.H. Perkin's teaching can be gauged from the fact that while at Manchester, 1892-1912, he trained over twenty future professors. In addition to his research work, Prescott also attended a pioneer course in biochemistry given by Weizmann and took part in a short course of postgraduate lectures on nuclear disintegration given by Ernest Rutherford, Hans Geiger being the demonstrator.
During the summer of 1912, Prescott spent some weeks at the Agricultural College at Holmes Chapel in Cheshire, recently affiliated with the University of Manchester. Here he made the decision to follow a career in agricultural chemistry. This resolution was not taken in the physical and intellectual isolation it might seem. When Joseph Prescott and his family returned to Accrington they lived at 47 Garbett Street. They soon made friends with their neighbours across the back lane, the family of Thomas Mason in Fountain Street. For reasons of health Mr Mason rented a smallholding at Priestley Clough where tomatoes and strawberries were produced and fowls were kept on a commercial scale. Here a son, Eric Mason, and James Prescott, who were fellow students and remained life-long friends, spent most of their holidays engaged in their own horticultural activities. Prescott kept bees and grew roses and sweet peas - and he was to engage in both recreational and investigative gardening virtually throughout the rest of his long life. For brief periods during 1909 and 1910 Prescott paid working visits to farms at Ellel near Lancaster, Bleasdale Moor and the Lune Valley. Here he engaged in activities associated with milk and cheese production, and took part in hay-making. Here also he collected and analysed his first soil sample. His feeling for agriculture on a wider scale was to be nurtured at Rothamsted, become adjusted to intensive irrigated agriculture in Egypt and blossom fully under the impact of Australian land use. Australian primary productions embraced widespread dry-land arable farming, irrigated horticulture, indigenous forest and exotic softwood silviculture, and numerous aspects of both intensive grazing of sown pastures and much broader-scale grazing and browsing of numerous indigenous species in the sheep and cattle raising industries. In the space of twenty years Prescott was to acquire an unrivalled knowledge of the agricultural, forest and pastoral industries and how these are influenced, for better or for worse, by both soil and climatic conditions, by fertilizer composition and use, and by management practices. The learning process was deliberate, covered a wide range of subjects and never ceased. Prescott disliked the term 'expert' and when faced with the need to categorise himself, did so with typical modesty by saying that he was a student.
In 1912 James Prescott received the first postgraduate scholarship in agricultural science awarded by the British Government. In October that year he took up his scholarship at Rothamsted Experiment Station at Harpenden, Herts. where E.J. (later Sir John) Russell had recently taken over as Director from Sir Daniel Hall who had retired. Under Russell's guidance, Prescott became engaged in the study of phosphate in the soil, particularly of those aspects concerned with its extraction and estimation. The six papers he published during this period reflected the continuing study of soil-plant-phosphate relationships that had been undertaken at Rothamsted following the earlier revolutionary work with superphosphate by Lawes and Gilbert, and the growing appreciation of the importance of the role of colloids, particularly clays, and their surface chemistry. Prescott worked for a time in the old Lawes Testimonial Laboratory, built in 1855, until it was demolished and then in new laboratories installed in the present buildings which were constructed during 1914-1915.
During 1914 Prescott became familiar with the technique of soil surveying during a working visit to Theodore Rigg at Biggleswade in Bedfordshire, where Rigg was doing a soil survey of market garden soils. In the late 1920s this experience was to prove most valuable to Prescott when he was faced with the problem of the irrigated lands of the Murray and Murrumbidgee river valleys in Australia and what first steps should be taken to define and cope with those problems. Prescott kept in touch with Rigg, later Sir Theodore Rigg and Director of the Cawthron Institute at Nelson in New Zealand.
One of the conditions of Prescott's scholarship was that he should spend a period at a continental university. He chose the University of Leipzig where studies in colloid science were conducted by Dr Wolfgang Ostwald in the Institute of Applied Chemistry. As well as having long discussions with Ostwald, Prescott took the opportunity to work on the literature on adsorption, to attend lectures on petrology and to take a practical course in agricultural biochemistry. His plans for further study were cut short by the threatening outbreak of the World War of 1914-18. He was advised to leave Germany immediately by Ostwald with whose family he had become friends. Having accepted a proffered loan of 100 marks from an American student named Osgood, he caught the last train to the Hook of Holland and went by the regular ferry service to Harwich. He arrived in Accrington with about twopence in cash and very hungry. Osgood returned later to Harvard while Prescott went back to Rothamsted to work again on phosphorus and the soil.
On 12 October 1915 at Accrington James Prescott married Elsie Mason, daughter of Thomas Mason and his wife Mary Jane and sister of his friend Eric Mason. They set up house in Manland Avenue, Harpenden. They had first met in 1902 on the platform at a Band of Hope meeting in Accrington Town Hall and had mutual interests both in their religion and in music. Elsie had been in the choir of Wesley Church and was a member of the Philharmonic Society at Accrington. James, amongst other musical interests, had taken the opportunity while in Leipzig to attend the weekly midday motet at Bach's old church St. Thomas's and a more formal presentation of Bach's choral work during Whitsuntide.
About a month after his marriage James Prescott was informed by Russell that advice had been sought about the appointment of a chemist to the Sultanic Agricultural Society of Egypt. The approach had been made by G.P. Foden, former Secretary of the Society and then its representative in Britain. Following Russell's suggestion Prescott applied for the position. After two meetings with Foden, Prescott was offered the appointment and he accepted. There was some delay during which the opportunity was taken to read Lane's Manners and Customs of the Modern Egyptians and the Koran in preparation for the Egyptian venture. In the following September James and Elsie Prescott travelled from Folkestone to Boulogne and on to Marseilles to board the Medina which, after dodging submarines, arrived at Port Said on 17 September.
The Sultanic Agricultural Society had been founded in 1895 by Prince Hussein Kamel who in 1914 became the Sultan of Egypt and who, on account of his interest in agriculture, was known as 'The Father of the Fellah'. Its headquarters were at Gezira and it ran an experimental farm at the village of Bahtim, near Matarieh, the legendary home of Moses and of the Holy Family while in Egypt. At Bahtim where he and his wife took up residence in 1916, Prescott's position was that of Chief Chemist and Superintendent of Field Experiments. The Society's main source of income was derived from the sale of fertilizer, mainly nitrate of soda from Chile, and part of the duty of the Chief Chemist and his staff was to check the quality of this fertilizer before distribution and sale.
Prescott's eight years of work in Egypt covered a very different and far wider range than that at Rothamsted. His thirteen papers published during this period reflect this difference in detail. Since the productive soils of Egypt are irrigated and do not respond to phosphate, there was no practical reason to follow up his earlier work on soil phosphate and his attention was therefore diverted to the study of nitrogen. Four of his publications deal specifically with this subject. Besides this, his work involved studies of bacteriological activity and field experiments with maize and cotton, including spacing and watering trials. He also studied base (i.e. cation) exchange and alkalinity of Egyptian soils and carried out a trial on the digestibility of bersim clover (Trifolium alexandrinum) for which an experimental group of four sheep was used. The widening of his agricultural experience had thus continued.
During 1919 Prescott submitted a thesis on his phosphate studies at Rothamsted to the University of Manchester and was awarded the degree of Master of Science. When his paper on 'Farmyard manure in Egypt', published by the Sultanic Agricultural Society in 1920, was translated into Arabic, his M.Sc. became Alim al Khemia – 'Learned in Alchemy' – much to his amusement, mixed with a little whimsical dismay at the thought of potential customers.
Between 1919 and 1922 when Egypt again became an independent nation, there were occasions when civil disorders caused considerable concern to the British authorities. In fact seven British soldiers and an official were murdered at Deirut. As a result, for reasons of safety, the Prescotts were moved to Cairo during 1920, after four years residence at Bahtim. Although Prescott considered the risk of remaining at Bahtim to be minimal they were moved by two army trucks and a group of soldiers armed with a machine gun. The laboratory was moved to Gezira but the field experiments continued at Bahtim. Prescott travelled to work at first by buggy, then by bicycle and later still by motorcycle and was provided with a revolver by the police. No attempt was made to molest him and both his scientific work and cultural life continued as before. During their eventual eight years in Egypt James and Elsie Prescott were able to continue an active interest in music. They bought a piano in 1917 and attended performances of both opera and ballet in Cairo where Elsie, under the auspices of the Y.M.C.A., also sang to British troops.
After the end of World War I the scientific community in Egypt built up steadily so that both interdisciplinary meetings and social gatherings were able to be held, often in one another's laboratories. The calibre of the scientific community in and around Cairo is clearly illustrated by five of its members subsequently becoming Fellows of the Royal Society of London: from medicine Charles Todd in 1930, from zoology H. Munro Fox 1937, from zoology Edward Hindle 1942, from soil science J.A. Prescott 1951, and from entomology C. B. Williams 1954. The scientific environment was also enlivened by frequent visits by colleagues from Europe. One of these, Olaf Arrhenius, came to Egypt late in 1920 and spent some time in Prescott's laboratory where he introduced Prescott to the concept of pH and its calorimetric determination; and Arrhenius published his first paper on Egyptian soils. Olaf was the son of Svante Arrhenius, the originator of the theory of electrolytic dissociation. Svante was visited by the Prescotts when they were on leave in 1923 and staying with Olaf and his wife Eva in Stockholm. Later, in Australia, Prescott and his colleagues were to make great use of the determination of pH and the way it varied both within the soil profile and geographically between different categories of soil. Prescott's interest in soil physics dating from his earlier days was again awakened by a visit to B.A. Keen at Rothamsted and a cryptic note made on 21 June 1920 while there on leave from Egypt 'to discuss statistical methods' indicates the beginning of this interest in a subject in which he was strongly to encourage a number of his younger colleagues in Australia.
Following the attainment of its independence in 1922, the policy of the Egyptian government was to replace British scientists by Egyptians. Foreseeing such a policy, some of the British residents had already left to take up appointments elsewhere and those staying on were placed on a month to month basis. When Sir John Russell visited Egypt on his return from the Sudan in February 1924 he became aware of this situation. Coincidentally on his return to Rothamsted his advice was sought by the Vice-Chancellor of the University of Adelaide Professor W. Mitchell, and the Chairman of its Finance Committee, Sir George Brookman, regarding appointments to an agricultural research institute that the University was to establish with an endowment provided by pastoralist Peter Waite who died in 1922. Prescott's name was put forward by Russell. As an outcome of this, Mitchell interviewed Prescott on board the R.M.S. Orvieto at Port Said on 9 April 1924. After some confusion about his future position, Prescott was offered and accepted the Chair of Agricultural Chemistry in June of that year. At the same time Dr A.E.V. Richardson was appointed to the Chair of Agriculture in the University and Director of the new Waite Agricultural Research Institute. Prescott was delighted to learn that his professional colleagues would include Douglas Mason, T. Brailsford Robertson and F. Wood Jones whose works were already familiar to him, and that the professor of botany was T.G.B. Osborn who had been a little his senior as a student at Manchester.
The years in Egypt were nearly over. There had been a low period in 1922 when their daughter Margaret, born on 22 February 1922, died on the following 26 October. But work and life had gone on until John Russell Prescott, named for Sir John Russell at Rothamsted, was born on 31 May 1924: he was to be part of a long Australian venture.
For Prescott the Egyptian experience had brought a lasting respect for the sobriety and industriousness of the fellaheen and an understanding of and sympathy for many aspects of Muslim life. The family left Port Said on the Moldavia on 13 August and arrived in Adelaide on 9 September 1924. Prescott's own professional accomplishments were most aptly summed up by an approach by the Egyptian government in 1927 asking him to consider a return to Egypt in its government service and to state his own terms. James Prescott declined. The Egyptian venture was over.
Following his appointment to the Waite Agricultural Research Institute, Prescott's interests, as at Rothamsted, were at first dominated almost exclusively by soil science. He first set out to establish accurate chemical and physical methods of soil analysis and for this purpose a temporary laboratory was set up in the old coach-house and stables of Urrbrae House, the former home of Peter Waite.
Meanwhile a new building, the John Melrose Laboratory (1929), the first of six main laboratories which, with ancillary buildings, ultimately comprised the Waite Institute, was being erected and experimental plots established in the adjacent fields. Early in this period C.S. Piper was appointed in 1925 as a chemist. This was the beginning of his meritorious career in soil and plant analysis including the demonstration with G. Samuel in 1928 that grey speck disease in oats grown in the Mount Gambier district was caused by an insufficiency of manganese, the first resolution of a trace element deficiency in plants in Australia. During the same period R.J. Best developed methods of electrometric determination of soil pH, chloride content and total soluble salts. Best moved on to virology but Piper continued as a soil and plant chemist throughout his career and quite early took over the total responsibility for laboratory work, so leaving Prescott free to pursue his other interests in soil classification and cartography and, a little later, climatology. Meanwhile further trace element studies embracing copper, zinc, boron and molybdenum were brought to successful conclusions by various staff members at the Institute.
In October 1924 Prescott first met A.C.D. (later Sir David) Rivett prior to his becoming in 1926 Chief Executive Officer of the new authority, the Commonwealth Council for Scientific and Industrial Research, CSIR, later the Commonwealth Scientific and Industrial Research Organization, CSIRO. Rivett subsequently informed Prescott of the growing concern of both State and Federal authorities with the steadily increasing problems of salinity and waterlogging in the irrigation areas of the Murray and Murrumbidgee River valleys and sought his advice about means of arresting the resulting loss in production and proceeding to reclamation. Following discussions with the various irrigation authorities in New South Wales, Victoria and South Australia, Prescott, in August-September 1926, made an inspection of all the irrigation areas involved, proceeding from east to west. He was shown so much damaged land that in the end, to get a more balanced view, he asked to be shown 'what you would show the Governor-General'. He was taken to the areas of more permeable soils served by higher-lift irrigation water. As a result of his inspection, Prescott suggested the setting up of a Soil Investigation Section under his leadership at the Waite Institute. This was implemented in July 1927 by the appointment of J.K. Taylor, who had detailed soil survey experience in California, and of H.N. England. They commenced the long task of soil surveying all irrigation areas of the riverine region with a detailed survey of Block E, a part of the Renmark Irrigation Area. The equally necessary stratigraphic and groundwater studies of the region were the responsibility of the Geological Surveys of New South Wales, Victoria and South Australia. Also at this time Prescott became chairman of CSIR's Irrigation Research Station Committee. At the completion of the Block E survey, England left to join the Water Conservation and Irrigation Commission of New South Wales and was replaced by the appointment of T.J. Marshall who with additional staff carried on the work until, after a period of study in California, he transferred his activities to soil physics and in 1941 became Head of the Laboratory's Soil Physics Section. By 1929 the Soil Investigation Section was renamed the Division of Soils of CSIR and, with Prescott as its first Chief on a part-time basis, its function was widened to embrace the study of the soils of Australia as a whole, a franchise only possible in a Commonwealth instrumentality. Prescott had already commenced the classification and mapping of Australian soils on a continental scale. Early in 1929 he appointed C.G. Stephens to do detailed studies of non-irrigated lands such as the apple-growing soils of Tasmania and to study the soils of that State on a broad scale. This proved to be the first step in the regionalisation of the Division's activities, an expansion which was accelerated in 1945 by greatly increased demands for soil survey work. Stephens was transferred to Adelaide in 1938 and in 1941 became Head of the Soil Survey and (later) Pedology Section in which capacity he produced a Manual of Australian Soils that described and defined the Great Soil Groups, the basic concept of which Prescott had introduced to Australia. This concept arose from his earlier awareness of the work of V.V. Dokuchaiev and his associates in Russia where, as early as the 1880s, a new scientific philosophy about soils and their relationship to climate, vegetation, parent material and time had arisen. The book Soil Science by K.D. Glinka published in 1908 expounding the Russian approach was translated into German during World War I and became more widely known after 1918. According to Prescott's notes a Russian, Tuliakov, who had worked in California, conveyed the Russian outlook on soils to English workers during 1908.
Dokuchaiev had demonstrated that the most prevalent soils in any region of Russia, when broadly classified in terms of their most prominent soil profile characteristics correlated well with climatic zones, i.e. the soils were zonal; and that the other less extensive soils, the intrazonal ones, were associated with one or more of different parent material, vegetation and relief; and finally that soils virtually without profile development and usually stony and shallow occurred in all zones and were thus azonal. As it developed in the later 19th century, this Russian approach based on the recognition of the soil profile, or section between surface soil and parent material below, recognised the Earth's soil mantle as the zone of continuing interaction between the lithosphere, biosphere and atmosphere.
Prescott and Taylor introduced detailed soil mapping based on soil series and types derived from the meticulous description of the different horizons, i.e. apparent layers, in the soil profile when inspected at frequent intervals on a basic grid pattern. This, and Prescott's use of the soil profile more widely observed, and broadly classified as Great Soil Groups, while taking greater account of the dominant soils in the landscape, enabled both localised detailed soil surveys and the continental mapping of the soils of Australia to proceed simultaneously. This constituted a revolution in soil science in Australia for it broke sharply away from the older technique based subjectively on the texture of the surface soil, its stoniness or otherwise, its surface relief and associated vegetation. These attributes were used to set up categories of land rather than soil, usually termed either first, second or third class and implying its degree of suitability for a given form of land use – be this some form of arable agriculture, or the grazing of improved or indigenous pasture, or the establishment of forest plantations.
To accomplish his objective, Prescott pursued two routes of investigation: he read and interpreted a great number of reports existing in various State Departments and Archives dealing with both early explorations and later surveys of land, and he travelled widely throughout Australia observing soils not only while travelling on the ground but also from aircraft. In the latter case he kept detailed notes of times of departure and arrival and of the appearances of changes in the patterns of landscapes observed from the air. Quite early he was convinced that vertical aerial photography would be of great assistance in detailed soil surveys. However at that time such aerial photographic cover was so meagre that special arrangements with either the Royal Australian Air Force or private air photo companies for air photographs of project areas at suitable scales had to be made. At first the photographs were used as an aid in the drawing office, but by the late 1930s they were used in the field for the direct correlation of soil series and types with observable features on the photographs and for the delineation of boundaries between the different soils.
In the decade 1927-1937, Prescott travelled throughout Australia from Tasmania in the south-east to the Kimberley region in the north of Western Australia, including an expedition to Lake Eyre with C.T. Madigan in 1929. His 1930 soil map of Australia was, as titled, tentative in nature and of very small scale (1:40 x 106). It was essentially a preliminary to that of 1931, published in CSIR Bulletin 52 as 'The Soils of Australia in Relation to Vegetation and Climate' and at a scale of 1:19 x 106. It used ten mapping units some of which were combinations of Great Soil Groups. This publication established Prescott's reputation not only within Australia but also internationally. It was the principal paper in a set of publications that he submitted to the University of Adelaide and for which he was awarded the degree of Doctor of Science in December 1932. Its importance is far greater than the title would suggest, for in it he related Australian soils not only to vegetation and to the leaching factor as determined by climate, but also to parent material, relief and age of the landscape where these are important factors in their formation. In particular he identified the soils containing ironstone gravels, nodules and boulders, which are of common occurrence almost throughout Australia, as being associated with and dissected from laterite, the type of material that had been named and described at Angadipuram in Malabar in India by Buchanan in 1807. Prescott demonstrated that such soils are associated with the eroded and redistributed remnants of lateritic soils formed originally under earlier climatic conditions on ancient peneplains of low relief and restricted drainage with a seasonally oscillating water table causing alternate oxidation and reduction in that portion of the soil mantle where laterite had consequently formed. These conclusions had been foreshadowed briefly in 1930 in a letter to Nature in which he also stated that 'the points of greatest interest will be the nature and period of these past climatic conditions'.
Prescott continued his activity in soil classification and mapping on a continental scale and extended his study of laterite to India and Thailand when the opportunity came later. His extensive travels in Australia continued, particularly in the northern part of the continent, until the outbreak of World War II. The mass of information collected found expression in a more detailed and larger scale map (1:10 x 106)of the soils of Australia that was published in 1944 as 'A Soil Map of Australia'. This displayed eighteen mapping units, three of which were essentially physiographic rather than pedological. It continued to reflect and sum up existing knowledge of Australian soils until it was ultimately replaced by a series of maps compiled and published by a number of younger colleagues in the 1960s and 1970s.
During 1948 Prescott was a member of a scientific delegation to India where he took the opportunity of studying a number of occurrences of laterite. On the completion of the mission he travelled to Siam, now Thailand, where by arrangement he met R.L. Pendleton from Johns Hopkins University. Pendleton had studied soils in several countries in south-east Asia and held views somewhat different from many of his American colleagues about the nature of laterite. Prescott and Pendleton studied laterite and its companion soils over a wide area of Siam and found themselves in general agreement. In 1952 they published 'Laterite and Lateritic Soils' in Communication No. 47 of the Commonwealth Bureau of Soil Science. In 1954 Prescott emphasised the need to adhere to the early definition of laterite by Buchanan by publishing a paper on 'The Early History of the Use of the Term Laterite'.
Prescott's findings about the age and topographic association of laterite and the sequence of events following its dissection came just prior to a period when a greatly increased interest in geomorphology was being generated in Australia. Similar interest was evident in Africa, Europe and North America.
The work of G. Milne in East Africa, where he developed the catena concept to relate soil patterns to topographic situation, greatly impressed Prescott as a means of resolving the problem of devising mapping units for use in intermediate scale surveys, i.e. those between continental on the one hand and detailed on the other. Quite quickly the concept of soil association arose out of the catena concept and other geomorphological forms of topographic expression found in the landscape with distinctive soil patterns. There was an immediate stimulus to workers both in the Division of Soils and in departments of geography in several of the universities. They looked with increasing interest at the genesis and age of various landforms, varying from desert dunes to surfaces capped by duricrust to coastal dunes and terraces. So much interest was generated that, following a request originating at a Conference in Soil Science in Melbourne in 1957, the Australian Academy of Science, after consulting the Australian Royal Societies, convened a Symposium on Geochronology and Land Surfaces in Relation to Soils in Australasia at CSIRO Division of Soils in Adelaide in December 1961. Despite the fact that he had retired as Director of the Waite Institute in 1955, Prescott was chairman of the organising committee. There were 44 participants in all. A report on the symposium, published by J.A. Prescott, C.G. Stephens and C.R. Twidale in the Australian Journal of Science in 1962, collated the different contributions made by the various pedologists, geologists and geomorphologists.
The administrative background to Prescott's work certainly played some part in his choice of research topics. In 1938 Professor A.E.V. Richardson left the Directorship of the Waite Agricultural Research Institute to become Deputy Chief Executive Officer of CSIR. Prescott was appointed Director in his place while still holding the Chair of Agricultural Chemistry and being Chief of the Division of Soils. He continued as part-time Chief of the Division of Soils until 30 June, 1947 when he retired to allow the appointment of J.K. Taylor as full-time Chief. For fourteen years the Richardson-Prescott partnership had been particularly productive. Richardson had been able to devote a large part of his efforts, including a talent for publicity that influenced the more progressive farmers and graziers, to increasing the size and staffing of the Waite Institute. Prescott was the devoted researcher, an inspiration to all and the focal point of the esprit de corps of the research staff. Prescott's scholarly influence was demonstrated in his enthusiastic development of the Waite Institute library to an unusually high standard. He also took the initiative in 1926 in the establishment of the Waite Institute Agricultural Sciences Club, which held regular interdisciplinary meetings that played an important role until the foundation of the Australian Institute of Agricultural Science in 1938. The prodigious growth and accomplishments of the Waite Institute and Division of Soils in the period 1924-1938 (which included the years of the great Depression) must be seen as the joint achievement of these two men.
Prescott's administrative load now increased greatly and he found that he could most profitably devote his somewhat interrupted efforts to climatology. His interest in this field had arisen shortly after taking up his appointment at the Waite Institute. This was in response to the realisation that the moisture regime of Australian soils reflected the strongly seasonal rainfall pattern of the continent, Mediterranean-type winter rainfall with summer drought in the south and monsoonal summer rain with winter drought in the north, with only a narrow zone along the east coast having a wider annual distribution of rainfall. These rainfall patterns controlled soil productivity by their influence on the onset and duration in the soil profile of sufficient available moisture for the requirement of plants, unless otherwise assisted by irrigation.
Prescott's first paper of a climatological nature dealt with 'Atmospheric Saturation Deficit in Australia' published in 1931. His first on soil physics, with H.G. Poole, concerned 'The relationships between Sticky Point, Moisture Equivalent and Mechanical Analysis in some Australian Soils' and appeared in 1934. These two papers were opening gambits in the study of soil moisture as related to atmospheric conditions on the one hand and to the actual physical conditions within the soil profile on the other. Prescott was to follow the first line of inquiry and T.J. Marshall with his colleagues in the Soil Physics Section the other. They were, most usefully, to complement each other. However, war intervened.
The outbreak of World War II in 1939 brought profound changes to the research programmes of both the Waite Institute and the Division of Soils. After the enlistment of some staff members in the armed services and following a discussion between Prescott and the Executive Committee of CSIR, both organisations became involved in various programmes of research directly concerned with the war effort including the re-establishment of a flax-growing industry, weevil control in steadily increasing stores of grain, soil survey of airfield sites, soil and soil-cement stabilization on airfields and the control of dust which was causing unacceptably high wear in aircraft engines. After 1941 the soil investigations involved most of the staff of the Soil Physics and Soil Survey Sections of the Division of Soils and the Agricultural Chemistry Department of the Waite Institute. Immediately after the entry of Japan into the war, some of the above personnel became involved in strategic mapping, and the selection of sites and testing of soils and water for army gardens. The airfield work led to the appointment of a soils engineer, G.D. Aitchison, to the Soil Physics Section. In the post-war years he led a Soil Mechanics Section, later a Division, which was for some years mainly concerned with the soil survey and investigation of domestic housing sites affected by unstable soils for which special foundation and construction methods were developed.
The beginning of the defeat of Japan in the Pacific immediately brought forth a far-sighted report by the Rural Reconstruction Commission which, amongst other recommendations, strongly advocated that soil surveys should be compulsory on all areas that it was anticipated would be developed as farms on which ex-servicemen were to be settled. The chairman of the Commission S.M. Wadham, Dean of the Faculty of Agriculture at the University of Melbourne, had been so impressed by the usefulness of the soil surveys done under Prescott's direction that he had not only persuaded some of his graduates to join the Division of Soils but fostered the above recommendation by the Commission. From 1944 the demand for soil surveys and their accompanying assessment for both dryland and irrigated agriculture grew so rapidly that a large increase in staff numbers had to be made in the Division, especially in the Soil Survey Section. To deploy this force to the best advantage, Prescott followed the earlier Tasmanian example and set up regional centres in Perth, Canberra, Hobart, Deniliquin and Brisbane in all of which the field staff was supported by laboratory workers. This process of regionalisation was still in progress when Prescott handed over to J.K. Taylor as Chief. One of Prescott's last appointments while Chief was that of J.P. Quirk who later became the fourth Director of the Waite Institute. Earlier that year K. Norrish had been appointed to pursue investigations of soil clays by using X-ray spectography and this was to lead to the formation of a Clay Mineralogy Section in the Division. Later in 1950, a Soil Microbiology Section was formed with R.J. Swaby as its leader and in 1965 a Soil Zoology Section was set up with K.E. Lee in charge. Thus the Division of Soils gradually came to have a dual structure of disciplinary Sections and logistic Regional Centres. As the demand for soil surveys of post-war land settlement areas waned the Regional Centres widened their activities to include pedological studies that were to make profound additions to the knowledge of the genesis of Australian soils and their geomorphic associations especially of lateritic soils in Western Australia and of the soils and prior streams of the Riverina in New South Wales.
Prescott's early ideas about climatology spread rapidly to the Waite Institute Departments of Agronomy and Entomology, Professor H.C. Trumble of the former relating the period of effective rainfall as defined by the months in which rainfall exceeds one third of the evaporation from a free water surface to the moisture requirements of agricultural crops and pastures, and Professor J. Davidson of the latter relating it to aspects of insect ecology. With Prescott they published a joint paper 'Climatology in Relation to Biology and Agriculture' in the Journal of the Australian Institute of Agricultural Science in 1938. Prescott went on to expand his methods of analysis of climatic data and in a paper with Joyce A. Collins and G.R. Shirpurkar on 'The Comparative Climatology of Australia and Argentina' published in 1952 refined the criterion for length of the growing season to those months in which p>0.4E0.75, P being precipitation and E evaporation from a free water surface or the estimated equivalent, 21 times saturation deficit. Maps of the isologs of the length of the growing season and calculations of it for individual areas being considered for development probably represented the greatest use made of Prescott's climatological studies. It also provided a ready means of demonstrating the incidence of drought by taking the climatological records for each month for any locality and calculating whether there had been any available moisture for that time and place. The expectation of droughts in the future was reflected by the results from the past.
Prescott's reputation as a climatologist grew steadily and he became chairman of the Working Group on Climate and Agriculture of the Commission of Climatology of the World Meteorological Organization, a position he continued to hold for some years after his retirement as Director of the Waite Institute in 1955.
Prescott pursued other climatological studies, particularly demonstrating overseas homoclimes for different parts of Australia and making related studies on pine trees of Mediterranean countries and the Mediterranean-like part of California, and on the grape vine. The first of these, with C.E. Lane-Poole, published in 1947, included data for Pinus radiata, the most important and widely used exotic tree in southern Australia. The second consisted of a series of three papers on the role of temperature. They were published in 1965 and 1969 and represent only a fraction of his interest in the grapevine and its product, wine.
Prescott was Chairman of the CSIR Oenological Research Committee from 1938 to 1955 and a member of and scientific adviser to the Council of the Australian Wine Research Institute from 1955 to 1970. He played a leading part in the establishment of that Institute in the grounds of the Waite Institute and in the training of its first Director, J.C.M. Fornachon. He was very encouraging, particularly in two of the Institute's early major projects, the development of the production of dry sherry by the flor process – work that brought international recognition because it provided scientific understanding of a traditional European process and created a sound technological basis for Australian commercial production - and the development of the stabilization of wine against potassium bitartrate precipitation, a form of spoilage then causing considerable losses in the wine industry.
In view of Prescott's Methodist upbringing it is at first surprising to find him so closely associated with the wine industry, but with the passage of time his views had gradually become more tolerant. In Egypt he had been amused to find himself regarded by his Egyptian workers and the tradesmen as a rare specimen, the Englishman who did not drink whisky. In Australia he came to be respected as a modest connoisseur of good wine, without the flamboyance often found in some wine masters. Following his visit to Russia in 1974 a story went the rounds in Adelaide that at a dinner in Moscow he had astounded his hosts by identifying correctly a varietal Hungarian wine.
In 1934 Prescott attended the Congress of the International Society of Soil Science held in Moscow. He went with members of the Le Play Society of London under the leadership of Sir John Russell. Whilst there he not only developed his interest in the history of Russian agricultural science but observed as much as possible of the Russian way of life under a Communist regime. On return to Australia he recorded his observations in a paper, 'Public Administration in Russia', published in 1936 and therein expressed the opinion that there were tangible signs of future developments that could bring a closing of the gap between the economic systems of the capitalist and socialist worlds. After his visit to Russia in 1974 under the auspices of the Royal Society of London and the Academy of Sciences of the U.S.S.R. to attend the 50th Jubilee Congress of the International Society of Soil Science and to study the Free Economic Society he offered no further comment about the possible closing of that gap. However, much happened in the intervening forty years, a World War that had for a brief period closed the gap completely, followed by a complete schism associated with the development of the threat of nuclear war.
Prescott did manage to pursue and bring to a conclusion his interest in Russian agricultural science that initally had arisen out of his knowledge of the pedological studies of V.V. Dokuchaiev in the latter part of the 19th century. He found that agricultural science in Russia had its origins in the Imperial Free Economic Society founded in 1765 with the approval of Catherine the Great, and that its transactions also commenced in that year. Its interests were wide and, amongst other agricultural matters, it dealt with aspects of serfdom until that practice was abandoned in 1861. Some of its later more scientific activities were concerned with fertilizer trials and land classification, the latter including studies of the famous chernozem (i.e. black land) region that began as early as 1844. The Free Economic Society ceased to exist when it was disbanded immediately following the revolution of 1917.
Prescott's studies received the full support of the present-day authorities, so as well as pursuing his investigations in Moscow, he was able to peruse the records of the Free Economic Society in the Central State Historical Archives in Leningrad and in the Fundamental Library of the Latvian Academy of Sciences in Riga. In Leningrad the present Dokuchaiev Institute for Soil Science is built on the original site of the Free Economic Society and embraces a soil museum founded by that body in December 1881. Dokuchaiev had addressed the Annual Meeting of the Society during the previous year. Prior to his last visit to Russia in 1974, Prescott had published two brief papers on the Free Economic Society; his concluding paper dealing with its foundation years was published in 1977. There is also an unpublished report on his 1974 visit in which he refers to Dokuchaiev's 1883 paper on 'Russian Chernozem' published by the Free Economic Society as 'classical' and 'one of the pillars of modern soil science'.
The Waite Agricultural Research Institute, under the 1927 Education Act, had responsibility for the teaching of University of Adelaide students in the Faculty of Agricultural Science in the advanced years of their course. The first two graduates as Bachelors of Agricultural Science obtained their degrees in 1932 and numbers remained low until after World War II. After 1947 numbers rose quite rapidly due partly to the post-war education of returned servicemen and partly to increasing university enrolments generally. Commencing in 1935, Honours degrees have steadily risen and much the same thing has occurred with Master's degrees. In 1951 the first Ph.D. student enrolled, since when there has been a steady increase with numbers reaching a maximum of 20 graduating in 1975. Honours and higher degree numbers have been influenced by a variable influx of foreign students especially from southern Asia. The teaching load was shared by the staff of all departments of the Waite Institute including Prescott who usually gave a bracket of lectures on soil classification. He also took steps to maintain a high standard of lecturing to students. On some occasions staff members of the Division of Soils were called upon to assist, particularly when regular lecturers were overseas on sabbatical leave. This assistance was also used in lectures given to returned servicemen who were enrolled for special tuition prior to being allocated land under the post-war settlement programme. Prescott was enthusiastic about this extra-curricular work and it fitted well with his participation in other similar activities.
From 1938 to 1956 Prescott was a member of the Advisory Board of Agriculture of South Australia, being chairman from July 1941 to June 1944. This involved presiding over sixteen meetings of the Board. He was highly regarded by his fellow members as being very much down to earth in this field of agricultural extension. He was chosen to represent the Board on the Producers' Group Committee in 1940 and represented the Board on the South Australian Council of Education in 1944. As well as these formal duties he was widely sought as a speaker at Branch meetings of the Agricultural Bureau and seemed to have a special rapport with the farmers whom he addressed. He was able to convey to them that they also had an important role in agricultural research in their participation in experimental trials and in the economic farm-testing of results. His election as a Life Member of the Agricultural Bureau of South Australia in July 1955 was a tribute to the regard in which he was held by the rural community. He was also a member of the Council of Roseworthy Agricultural College. Prescott had a great respect for the gentlemen's agreement between CSIR and the State Departments of Agriculture that the staff of the former would not, unless invited, engage in extension work. However, such an arrangement was not so rigidly present in the case of the Waite Institute which in fact had some service commitments, particularly in the fields of entomology and plant pathology.
Prescott's view that research and education were of mutual benefit was summed up in a letter he wrote in 1947 to the entomologist Charles Birch: 'I have always held the view that with few exceptions research must be associated either with teaching or advisory work. The first helps to develop ideas more clearly, the second brings the problems of current importance to the notice of the research worker.'
An equally important educational achievement was his organisation of what were termed Winter Schools in Soil Science. Two of these courses of instruction were held, the first in 1939 just before World War II, and the second in 1945 at its end. They were intended to promote the knowledge of soil science amongst the staff of various Federal and State Departments such as those dealing with agriculture, forestry, lands, irrigation and conservation, and to encourage the teaching of soil science in the various University Faculties of Agriculture. Their immediate result was the generation of a body of knowledge about soil that could not have been achieved by any other route; and this was to prove very useful immediately after World War II when there was a greatly increased demand for the assessment of land for farm settlement. These schools were also the natural forerunner of the later Conferences in Soil Science, the first of which was held in Adelaide in 1953, and which are now held regularly at different venues throughout Australia. The change from School to Conference reflects the steady increase in the role of University Faculties of Agricultural Science in the teaching of soil science.
James Prescott also had a notable association with Scotch College in Adelaide. He was appointed a Member of the Council of Governors in November 1938, became Deputy Chairman in August 1943, Seal Holder in June 1949, and Chairman in June 1953, remaining in that capacity until May 1961. In that month the State General Assembly of the Presbyterian Church of South Australia noted with regret his resignation and expressed the deepest appreciation of his services over 22 years and paid a 'high tribute to his contribution to the cause of education in this State and especially for his leadership in all branches of the life of Scotch College'. At the school the laboratories for advanced physics and chemistry, built with funds provided by the Industrial Fund for the Advancement of Scientific Education in Schools, were completed in December 1962 and named the Prescott Laboratories.
Prescott also had an association with adult education in Australia, especially in the University of Adelaide. He was appointed to the Joint Committee of the University and the Workers' Educational Association in 1948. The committee organised tutorial classes. Primarily his membership was based in his knowledge of South Australia's country districts. He was appointed to the Board of Adult Education in 1958 when the Department of Adult Education of the University was created. He retired from this position in 1969 and from his associate membership of the Australian Association of Adult Education in 1970. He had also represented the University on the South Australian Committee of the National Films Board.
During the course of his climatological studies Prescott used increasingly refined mathematical techniques to examine the available meteorological data. He did possess early textbooks on mathematical statistics and his 1920 comment, 'to discuss statistical methods', presumably with R.A. Fisher, was followed during late 1930 by correspondence with Fisher concerning, first, methods of sampling very large areas affected by agriculturally damaging levels of salinity, and secondly, the design of plot experiments that would cope with environmental variability. Following this both Prescott and Richardson did encourage others on the staff of both the Waite Institute and the Division of Soils to undertake such studies and to use the acquired skills in experimental design, examination of results and the determination of their significance. Quite the most successful was E.A. Cornish, an agrostologist appointed in 1932 to the staff of the Department of Agronomy at the Waite Institute after graduating from the University of Melbourne. Encouraged by Richardson and Prescott, Cornish rapidly developed his skills in mathematical statistics and greatly influenced the design of field experiments at the Institute. Ultimately he became Chief of the Division of Mathematical Statistics of CSIRO. Cornish's rapid grasp of statistical discipline is illustrated by the fact that as early as July 1935 Prescott recommended to T.N. Stoate of the Western Australian Department of Forestry that he consult Cornish regarding the design of his experimental plot work with trace elements on Pinus pinaster.
In January and February 1948, in response to an invitation by the Indian Government, a Scientific Goodwill Mission of five delegates was sent to India by the Australian government. The mission was led by Sir John Madsen, professor of electrical engineering at the University of Sydney. Prescott represented agricultural science. The delegation attended an Indian Scientific Conference at Patna and then visited numerous scientific institutes throughout India.
Prescott took the opportunity to widen his acquaintance with laterite in India and took several photographs of its occurrence. His notebook for the whole visit covers more that 100 pages and includes numerous quotes from Buchanan's book of 1807 describing laterite, a copy of the first edition of which he found in the Library at Bangalore. He was able to visit his brother, John, who was working for the Standard Vacuum Oil Company in Calcutta, and when he went on to Siam at the end of the Indian tour he visited his sister Hilda in Bangkok.
In March and April of 1951 Prescott led a three-man delegation to Pakistan on a purely agricultural mission. The purpose of the visit was to advise on the establishment of an agricultural research station in the North-West Provinces where about two million acres of land were to be investigated prior to development: the Thal Project. His notebook for the project covers approximately 80 pages.
When Prescott came to Australia in 1924 it was just beginning to make some impact on the scientific world. Prescott was to further the development of agricultural science in a revolutionary manner that attracted international attention. In 1951 he was elected a Fellow of the Royal Society of London for his fundamental pedological researches and his pioneering work in climatology. The need for this work was summed up most aptly by his own words in 'A Soil Map of Australia', 1944:
The assessment of the natural resources of Australia is a pre-requisite of any intelligent planning of the use of these resources. The use of the land of Australia depends primarily on two factors: soil and climate – these between them determine the native vegetation, which is the basis of pastoral occupation or forest management and the choice of crop, trees or pastures which may be grown. The period of exploitation of the best soils in the best rainfall regions is rapidly drawing to a close, and increasing use must be made in the future of soils which are deficient in one or more respects providing the rainfall is adequate and these deficiencies can be overcome. Where water conservation is possible and irrigation practicable, water must be used on appropriate soils where there is a reasonable chance of irrigation husbandry being mantained on a permanent basis.
These words reveal that Prescott was not only a scientist concerned with fundamentals but a conservation-minded agriculturalist in that he recognised the need for land development in Australia, provided that it was based on sound principles and attempted within the limits imposed by climatic conditions. His classification and mapping of the soils of Australia and his direction of detailed soil surveys of strategically chosen areas together with his climatological techniques for determining the availability of soil moisture provided the best practical parameters for the use and conservation of Australian soils. This was recognised when he became a Foundation Fellow of the Australian Academy of Science in 1954.
Gradually during the first half of his life James Prescott developed a cosmopolitan outlook. Steps in this process were his primary schooling in Catholic France, his Methodist Church and trade union family background, the broadening influence of his university education, his personal relationships with the Ostwald and Arrhenius families in Germany and Sweden, his service with and for a Muslim community in Egypt, his international projects in Europe and Asia, and his long service to agriculture in the egalitarian society of Australia. These were the most important of the many ingredients that made him a man of the world. Prescott, despite his favourable interaction with most elements of the Australian community, never became Australian in demeanour or speech. His emotions were rarely displayed, he never used coarse language and he was totally devoted to his profession and family. He was deliberate in all that he said and did, and much preferred to lead by example. Yet he could be quietly but emphatically authoritarian if the necessity for that approach arose. For example he was firmly opposed to members of the Waite Institute or Division of Soils accepting payment for services rendered to business or industry.
Prescott's experience of life within the several religious communities in which he worked led him gradually to become humanist in philosophy. He saw the various religions and the moral strictures that they espoused as different manifestations of Man's search for codes of conduct, law and order and leadership – institutions which, if he so desires, Man may seek by other than spiritual means.
Prescott's sense of humour remained typically Lancastrian throughout his life. It was subtle, never caustic or sarcastic, and he did not resort to irony or ridicule. Any point that he wished to make was usually conveyed by a gentle strain of innuendo. He often recorded incidents that amused him: a typical example occurred at the Ord River Station in the Kimberleys in Western Australia in 1937. To quote: 'Early in the morning, 5.30 a.m., before daylight I became aware of a cup of tea approaching without any visible means of support until a soft voice was heard to say "You take-it milk in 'im".' Prescott told his story at the dinner that concluded the first Winter School in Soil Science, merely adding 'Those cattle men up there can be a little rough with their jokes.'
Prescott was a man of average height and build and by gardening and walking and as he put it, 'by a judicious choice of ancestors' he remained physically fit until shortly before his death. He chose to give up driving a motor car only when he was 90 years of age. He took the annual test required just before his birthday and as expected passed. He then handed the licence back to the tester saying, 'Thank you, I am resigning'. In at least one sense Prescott was a marked man: he exhibited Heterochromia iridum, one of his eyes being blue, the other brown – a very unusual condition in man.
Prescott's few close friends came from among his professional colleagues. He long continued to correspond with those from his Harpenden and Egyptian days. In Adelaide they included T. Harvey Johnston, Professor of Zoology, S.W. Pennycuick of the Department of Chemistry, Dr Ruth Mocatta and A. Grenfell Price, Master of St Mark's College and sometime Member of Parliament. Amongst his contemporaries the person whom Prescott most obviously respected and admired was Sir David Rivett, Chief Executive Officer and later Chairman of CSIR. Rivett in return respected the scientific ability and personal qualities of both Richardson and Prescott, and often sought their opinions about problems in the primary industries, the field of research in which CSIR was long largely involved and which proved so successful. The degree of personal friendship that developed between Rivett and Prescott extended to discussions about prospects of a career in physics for his son, John. John Russell Prescott is now the Elder Professor of Physics at the University of Adelaide.
Throughout his career, Prescott jealously guarded Sunday as a time devoted to his family. When his son returned to Adelaide in 1971, the resumption of this pattern contributed to what he described as the 'great contentment' of his later years.
In 1934 a discussion group named after the aboriginal word for talk amongst people, the Wongana Circle, was formed in Adelaide. Prescott became a member in 1936 and remained an active participant until 1962. The members came from many intellectual walks of life in Adelaide including the university, business, the judiciary, the press and the arts. It included such widely known people as S.W. Pennycuick from the University Department of Chemistry and Hans Heysen, the painter. Their discussions ranged over a wide field of topics and sometimes included guest speakers. After a gap of some years Prescott attended the 50th Anniversary Dinner in December 1984 and the 50th anniversary in 1986 of his own first meeting in August 1936.
James Arthur Prescott died on 6 February 1987. Elsie his wife had pre-deceased him in Adelaide in 1972 and so brought to a close a marriage marked not only by mutual devotion and parental care and guidance of their son John, but also by unpretentious living and the quiet enjoyment of the best of literature, music and the arts.
To honour him, and to remind South Australians in particular of the debt they owe to him, there is a plaque let into the footpath along North Terrace, Adelaide, that reads 'James Arthur Prescott, CBE, Founder of Soil Science in Australia, born 1890.'
In 1947, in recognition of Prescott's service to Australian science, he was made a Companion of the Order of the British Empire. In 1956, the Centenary of the University of Melbourne, that body conferred on him the Honorary Degree of Doctor of Agricultural Science. In 1971 the Australian Society of Soil Science established the J.A. Prescott Medal to be awarded for outstanding contributions to soil science and climatology. Prescott said that this action gave him more pleasure than any other honour accorded to him. In 1980 the Waite Institute and the CSIRO Division of Soils held a two-day symposium to honour his ninetieth birthday. The major purpose of the symposium was to recognise his distinguished contributions to Australian agriculture and agricultural research through the disciplines of soil science and climatology. The proceedings, Red-brown Earths of Australia, were published in 1981.
This memoir was originally published in Historical Records of Australian Science, vol.7, no.3, 1988. It was written by:
The authors are greatly indebted to Professor John Russell Prescott for making available his father's extracts from his diaries, extensive personal notes and records, and his field books. A variety of archival material at the Waite Institute was also perused. Dr C.S. Piper provided substantial information about the early days of the Waite Institute. Mr R.I. Herriot, former Conservator of Soils in the South Australian Department of Agriculture and later Principal of Roseworthy Agricultural College, recalled details of Professor Prescott's relationships with the farming community.
© 2024 Australian Academy of Science